An Efficient Algorithm for REML in Heteroscedastic Regression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Algorithm for REML in Heteroscedastic Regression∗

This paper considers REML (residual or restricted maximum likelihood) estimation for heteroscedastic linear models. An explicit algorithm is given for REML-scoring which yields the REML estimates together with their standard errors and likelihood values. The algorithm includes a Levenberg-Marquardt restricted step modification which ensures that the REML-likelihood increases at each iteration. ...

متن کامل

Efficient Quantile Regression for Heteroscedastic Models

Quantile regression provides estimates of a range of conditional quantiles. This stands in contrast to traditional regression techniques, which focus on a single conditional mean function. Lee et al. (2012) proposed efficient quantile regression by rounding the sharp corner of the loss. The main modification generally involves an asymmetric l2 adjustment of the loss function around zero. We ext...

متن کامل

Asymptotically efficient estimators for nonparametric heteroscedastic regression models

This paper concerns the estimation of a function at a point in nonparametric heteroscedastic regression models with Gaussian noise or noise having unknown distribution. In those cases an asymptotically efficient kernel estimator is constructed for the minimax absolute error risk.

متن کامل

Active Heteroscedastic Regression

An active learner is given a model class Θ, a large sample of unlabeled data drawn from an underlying distribution and access to a labeling oracle that can provide a label for any of the unlabeled instances. The goal of the learner is to find a model θ ∈ Θ that fits the data to a given accuracy while making as few label queries to the oracle as possible. In this work, we consider a theoretical ...

متن کامل

An efficient instance selection algorithm for k nearest neighbor regression

The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, the population size becomes a major concern for kNN, since large population size may result in slow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational & Graphical Statistics

سال: 2002

ISSN: 1537-2715,1061-8600

DOI: 10.1198/106186002321018812